Преподавателска дейност

  1. Space and Gas-discharge Plasma Simulation
    The aim of this course is to introduce the basic methods used for computer plasma simulation. The course consists of three parts: 1) modelling of charged particles motion in arbitrary electric and magnetic fields; 2) Statistical plasma description and methods for the numerical solution of the Boltzmann equation – particle-in-cell, Monte Carlo, direct methods, expansion of the distribution function; 3)
  2. Fluid plasma modelling and magnetohydrodynamics. The course includes considerable amount of practical exercises.
  3. Gas-discharge Plasma Sources
    The course introduces the different types of discharges used in industrial plasma application and scietific research. First we start with introduction to the breakdown processes at different frequency ranges. Then the course continues with the different DC, RF and MW discharges including pulsed discharges like DBD.
  4. Information and Statistics in Wireless Communications
    The course introduces the basics of the Information theory and its applications in the communication systems and particularly in the wireless communications.
  5. Computer Design of Electronic Circuits
    The aim of this course is to introduce to the students the principles and the essence of the computer aided electronic design systems in the modern engineering. At the end of the course the students will be able to use and take advantage of the contemporary electronic design systems consistent with the present industrial standards for the whole process of circuit design – starting with the layout of the basic concept of the engineering project, going through the creation and simulation of the schematics and finally, building the PCB topology and presenting the final product.
  6. Signals and systems
    An introductory course in signals and systems.

Доц. д-р Станимир Колев

Катедра „Радиофизика и електроника“
Физически факултет, Софийски университет
бул. Джеймс Баучър 5
1164 София, България
Телефон: (+359) 2 81 61 689
Мейл: skolev(ат)phys.uni-sofia.bg
Стая Б414A

Изследователска дейност

  1. Gliding arc discharges
    – Computer modelling and applications in CO2 decomposition by gliding arc discharges at atmospheric pressure
  2. Negative hydrogen ion sources for use in neutral beam injection systems for fusion reactors
    – Computer modelling and diagnostics of negative Hydrogen ion sources.
    – Transport of magnetized plasmas in low pressure plasma sources. Magnetic barrier (magnetic filter) physics.
  3. Medical applications of atmospheric pressure plasma jets
    – Development of small size pulsed/AC discharges for biomedical applicaions.
  4. DC discharges for spectroscopy applications
    – Modelling of DC discharges in different gases at low pressure.
    – Plasma Diagnostics
    – Probe diagnostics.
    – Photodetachment diagnostics.
    – Electrical characterisation of RF discharges.
    – Plasma spectroscopy.

Списък с публикации

  1. V. Ivanov, Ts. Paunska, S. Lazarova, A. Bogaerts, St. Kolev
    Gliding/glow arc discharge: Compering the performance of different discharge configurations
    Journal of CO2 Utilization (2023) 67, 102300-0, (2023) (PDF)
  2. V. Vasilev, S. Iordanova, E. Vladkov and St. Kolev, “Conversion of CO2 in a pulsed arc discharge”,J. Phys: Conf. Series 2240, 012031, (2022) (PDF)
  3. P. Tsonev, V. Ivanov, St. Kolev, Kh. Tarnev and Ts. Paunska,
    “Turbulent flow influence on the discharge parameters of a magnetically gliding arc discharge”,
    J. Phys: Conf. Series 2240, p. 012035, (2022) (PDF)
  4. V. Ivanov, S. Lazarova, S. Iordanova, Ts. Paunska, N. Georgiev and St. Kolev
    “Conversion of CO2 in stabilized low-current arc discharge at atmospheric pressure”,
    J. Phys: Conf. Series (2022) 2240, 012029 (PDF)
  5. V. Ivanov, Ts. Paunska, Kh. Tarnev and St. Kolev
    “Magnetic field stabilization of low current DC arc discharge in cross flow in argon gas at atmospheric pressures – a numerical modelling study”,
    Plasma Sources Sci. Technol. 30, p. 085007 (2021) (PDF)
  6. S. Ivanov, S. Kolev and Z. Kiss’ovski,
    “Numerical investigation of the plasma processes for propellant heating in electrothermal plasma thruster for nanosatellites”
    Contributions to Plasma Physics, 61, 202100017-0 (2021) (PDF)
  7. St. Kolev, Ts. Paunska, G. Trenchev and A. Bogaerts, “Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge”, J. Phys: Conf. Series 1492, 012007 (2020) (PDF)
  8. Ts. Paunska, G. Trenchev, A. Bogaerts and S. Kolev, “A 2D model of a gliding arc discharge for CO2 conversion”, AIP Conference Proceedings, 2075, p. 060008, (2019) (PDF)
  9. G. Trenchev, A. Nikiforov, W. Wang, St. Kolev, A. Bogaerts, “Atmospheric pressure glow discharge for CO2 conversion: Model-based exploration of the optimum reactor configuration”, Chem. Eng. J., (2019), 362, 830-841 (PDF)
  10. St. Kolev, A. Bogaerts, “Three-dimensional modeling of energy transport in a gliding arc discharge in argon”, Plasma Sources Sci. Technol. (2018), 27 125011 (15) (PDF)
  11. St. Kolev, S.R. Sun, G. Trenchev, W. Wang, H.X. Wang, A. Bogaerts, “Quasi-Neutral Modeling of Gliding Arc Plasmas“, Plasma Process Polym. (2017), 14 , 1600110 (PDF)
  12. A. Bogaerts, A. Berthelot, S. Heijkers, St. Kolev, R. Snoeckx, S. Sun, G. Trenchev, K. Van Laer and W. Wang, “CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design“, Plasma Sources Sci. Technol. (2016), 26, 063001 (PDF)
  13. G. Trenchev, St. Kolev and Zh. Kiss’ovski, “Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs“, Plasma Sources Sci. Technol. (2017),26, 055013 (PDF)
  14. G. Trenchev, St. Kolev, W. Wang, M. Ramakers, and A. Bogaerts, “CO2 Conversion in a Gliding Arc Plasmatron: Multidimensional Modeling for Improved Efficiency“, J. Phys. Chem. C (2017), 121, 24470–24479 (PDF)
  15. S.R. Sun, St. Kolev, H.X. Wang and A. Bogaerts, “Investigations of discharge and post-discharge in a gliding arc: a 3D computational study“, Plasma Sources Sci. Technol. (2017), 26, 055017 (PDF)
  16. S.R. Sun, St. Kolev, H.X. Wang and A. Bogaerts, “Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics“, Plasma Sources Sci. Technol. (2017), 26, 015003 (PDF)
  17. V. Georgieva, A. Berthelot, T. Silva, St. Kolev, W. Graef, N. Britun, G. Chen, J. van der Mullen, T. Godfroid, D. Mihailova, J. van Dijk, R. Snyders, A. Bogaerts, and M.-P. Delplancke-Ogletree, “Understanding microwave surface-wave sustained plasmas at intermediate pressure by 2D modeling and experiments“, Plasma Process Polym. (2017), 14, 1600185 (PDF)
  18. G. Trenchev, St. Kolev, A. Bogaerts, “3D model of a reverse-vortex flow gliding arc plasmatron“, ESCAMPIG XXIII, Bratislava, Slovakia, July 12-16, 2016
  19. W. Wang, A. Berthelot, St. Kolev, X. Tu, A. Bogaerts, “CO2 conversion in a gliding arc plasma: 1D cylindrical discharge model“, Plasma Sources Sci. Technol. (2016),25, 0035014 (PDF)
  20. G. Trenchev, St. Kolev and A. Bogaerts, “3D model of a reverse vortex flow gliding arc reactor“, Plasma Sources Sci. Technol. (2016), 25, 0035014 (PDF)
  21. A. Berthelot, S. Kolev and A. Bogaerts, “Different pressure regimes of a surface-wave discharge in argon: a modeling investigation.“, in: Microwave dischages: Fundamentals and applications, A. Gamero and A. Sola (Eds.), UCOPress, Cordoba, Spain (2016), pp. 57-62, (PDF)
  22. I. Bozhinova, S. Kolev, Tsv. Popov, A. Pashov, “Metal hydrides studied in gas discharge tube“,Journal of Physics: Conference Series (2016), 715, 012002 (2016)(PDF)
  23. St. Kolev and A. Bogaerts, “Similarities and differences between gliding glow and gliding arc discharges“, Plasma Sources Sci. Technol. (2015), 24, 065023 (PDF)
  24. St. Kolev and A. Bogaerts, “2D model for a gliding arc discharge“, Plasma Sources Sci. Technol. (2015), 24, 015025 (PDF)
  25. St. Kolev, S. Sun and A. Bogaerts, “Modelling of an argon gliding “arc” discharge“, 22nd International Symposium on Plasma Chemistry, July 5-10, 2015; Antwerp, Belgium, 22nd ISPC Conf. Proc. (2015), Vol. 22, P-I-2-35 (PDF)
  26. G. Trenchev, St. Kolev and A. Bogaerts, “Modelling a reverse-vortex flow gliding arc plasma reactor in 3D“, 22nd International Symposium on Plasma Chemistry, July 5-10, 2015; Antwerp, Belgium, 22nd ISPC Conf. Proc. (2015), Vol. 22, P-I-2-71 (PDF)
  27. A. Berthelot, St. Kolev and A. Bogaerts, “2D self-consistent modelling of an argon microwave plasma over a wide range of pressure” 22nd International Symposium on Plasma Chemistry, July 5-10, 2015; Antwerp, Belgium, 22nd ISPC Conf. Proc. (2015), Vol. 22, ITN-03 (PDF)
  28. K. Van Laer, St. Kolev and A. Bogaerts, “Modelling of a packed bed dielectric barrier discharge plasma reactor” 22nd International Symposium on Plasma Chemistry, July 5-10, 2015; Antwerp, Belgium, 22nd ISPC Conf. Proc. (2015), Vol. 22, O-11-1 (PDF)
  29. V. Georgieva, A. Berthelot, T. Silva, St. Kolev, G. Chen, N. Britun, T. Godfroid, D. Mihailova, W. Graef , J. van Dijk, R. Snyders, A. Bogaerts and M.-P. Delplancke-Ogletree, “2D modelling of an Ar microwave sustained discharge at intermediate pressure: a comparison with the experiment” 22nd International Symposium on Plasma Chemistry, July 5-10, 2015; Antwerp, Belgium, 22nd ISPC Conf. Proc. (2015), Vol. 22, O-11-6 (PDF)
  30. I. Bozhinova, St. Kolev, M. Dimitrova, Tsv. Popov, and A. Pashov, “Discharge tube with coaxial geometry for efficient production of metal hydrides“, Rev. Sci. Instrum. (2013), 84, 093107 (PDF)
  31. G. Fubiani, J. M. Hagelaar, J. P. Boeuf and St. Kolev, “Modeling a high power fusion plasma reactor-type ion source: Applicability of particle methods“, Phys. Plasmas (2012), 19, 043506
  32. St. Kolev, J. M. Hagelaar, G. Fubiani and J. P. Boeuf, “Physics of magnetic barrier in low temperature bounded plasmas – insight from particle-in-cell simulations“, Plasma Sources Sci. Technol. (2012), 21, 025002 (PDF)
  33. Zh. Kiss’ovski, A. Ivanov and St. Kolev, “Plasma parameters of a small microwave discharge at atmospheric pressure obtained by probe diagnostics“, J. Phys.: Conf. Ser. (2012), 356, 012010 (PDF)
  34. St. Kolev, G. J. M. Hagelaar and J. P. Boeuf, “Particle-in-cell with Monte Carlo collision modeling of the electron and negative hydrogen ion transport across a localized transverse magnetic field“, Phys. Plasmas (2009), 16, 042318 (PDF)
  35. Zh. Kiss’ovski, St. Kolev, S. Müller, Ts. Paunska, A. Shivarova and Ts. Tsankov, “Expanding hydrogen plasmas: photodetachment technique diagnostics“, Plasma Phys. Control. Fusion (2009), 51, 015007 (PDF)
  36. St. Kolev, Ts. Paunska, A. Shivarova, Kh. Tarnev, and Ts. Tsankov, “Self-consistent model of an inductively driven plasma source of negative hydrogen ions” 36th EPS Conf. on Plasma Phys. Sofia, Bulgaria, 2009 (ECA 33E, O-5.064 (2009)). 36th EPS Conf. Proc. (2009), Vol. 33E, O-5.064 (PDF)
  37. St. Kolev, A. Shivarova, Kh. Tarnev and Ts. Tsankov, “Particle and Energy Fluxes in a Two-Chamber Plasma Source“, IEEE Trans. Plasma Sci. (2008), 36, 1390(PDF)
  38. St. Kolev, A. Shivarova, Kh. Tarnev and Ts. Tsankov, “Two-dimensional fluid model of a two-chamber plasma source“, Plasma Sources Sci. Technol. (2008), 17, 035017 (PDF)
  39. Zh. Kiss’ovski, St. Kolev, A. Shivarova and Ts. Tsankov, “Laser photodetachment diagnostics of electronegative expanding plasmas“, J. Phys. Conf. Series (2008), 113, 012012 (PDF)
  40. St. Kolev, A. Shivarova, Kh. Tarnev and Ts. Tsankov, “2D fluid-model simulations of plasma expansion“, J. Phys. Conf. Series (2008), 113, 012010 (PDF)
  41. St. Kolev, A. Shivarova, Kh. Tarnev and Ts. Tsankov, “2D fluid-plasma model of a tandem-type plasma source“, J. Phys. Conf. Series (2008), 113, 012011 (PDF)
  42. Zh. Kiss’ovski, St. Kolev, A. Shivarova and Ts. Tsankov, “Expanding plasma region of an inductively-driven hydrogen discharge“, IEEE Trans. Plasma Sci. (2007), 35, 1149 (PDF)
  43. St. Kolev, St. Lishev, A. Shivarova, Kh. Tranev and R. Wilhelm, “Magnetic filter operation in hydrogen plasmas“, Plasma Phys. Control. Fusion (2007), 49, 1349-1369(PDF)
  44. St. Kolev, A. Shivarova and Kh. Tarnev, “Nonlocal conductivity effects in low-pressure cylindrical inductive discharges“, J. Phys. Conf. Series (2007), 63, 012020 (PDF)
  45. St. Kolev, Ts. Paunska, A. Shivarova and Kh. Tarnev, “Low-pressure inductive discharges“, J. Phys. Conf. Series (2007), 63, 012006 (PDF)
  46. I. Djermanov, St. Kolev, St. Lishev, A. Shivarova and Ts. Tsankov, “Plasma behaviour affected by a magnetic filter” J. Phys. Conf. Series (2007), 63, 012021 (PDF)
  47. M. Dimitrova, N. Djermanova, Zh. Kiss’ovski, St. Kolev, A. Shivarova and Ts. Tsankov, “Probe diagnostics of expanding plasmas at low gas pressure“, Plasma Process. Polym. (2006), 3, 156-159 (PDF)
  48. Ts. Tsankov, Zh. Kiss’ovski, N. Djermanova and St. Kolev, “Electron energy distribution function measurements in an inductively driven tandem plasma source“, Plasma Process. Polym. (2006), 3, 151-155 (PDF)
  49. St. Kolev, H. Schlüter A. Shivarova and Kh. Tarnev, “A diffusion-controlled regime of cylindrical inductive discharges“, Plasma Sources Sci. Technol. (2006), 15, 744-756 (PDF)
  50. St. Kolev, A. Shivarova and Kh. Tarnev, “Diffusion-controlled inductive discharges” in: Meetings in Physics at University of Sofia, ed. A. Proykova (Heron Press, Sofia, 2004), vol. 5, p.16-20. (PDF)
  51. N. Djermanova, O. Ezekiev, Zh. Kiss’ovski, St. Kolev and A. Shivarova, “Diagnostics of Trivelpiece-Gould mode produced discharges“, Vacuum (2004), 76, 389-392 (PDF)
  52. N. Djermanova, Zh. Kiss’ovski, St. Kolev, A. Shivarova and Kh. Tarnev, “Probe diagnostics of high-frequency gas discharges sustained in the fields of Trivelpiece-Gould modes” in: Meetings in Physics at University of Sofia, vol. 3, ed. A. Proykova, (Heron Press, Sofia, 2002), p. 18-22 (PDF)
  53. N. Djermanova, Zh. Kiss’ovski, St. Kolev, H. Schlüter, A. Shivarova and Kh. Tarnev, “Probe diagnostics of waveguided discharges in an external magnetic field“, Vacuum (2002), 69, 147-152 (PDF)